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Background

@ Internet routing has evolved organically, by the expedient hack....
@ ... basic principles need to be uncovered by reverse engineering.
@ In the process, a new type of path problem is discovered!

@ This may have widespread applicability beyond routing — perhaps
in operations research, combinatorics, and other branches of
Computer Science.
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Shortest paths example, sp = (N*°, min, +)

The adjacency matrix
1 2 3 4 5
2 5 4 1 oo 2 1 6 oo
/J\ 2 2 oo 5 o 4
\T/ 4 6 o 4 oo o
6 \é 5 o0 4 3 o0 o
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Shortest paths example, continued

The routing matrix
1 2 3 4 5
2 5 4 1 021 5 4
/ 22 0 37 4
- 1 3 Ax=3|1 3 0 4 3
4 |57 407
6 4 5144370

Matrix A* solves this global
\QID optimality problem:

Bold arrows indicate the A, j) = Er;;gp ) w(p),
shortest-path tree rooted at 1. perind
where P(i, j) is the set of all paths
from i to j.
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Widest paths example, (N>, max, min)

The routing matrix
2 3
4

Matrix A* solves this global
optimality problem:

1 4 5
2 5 4 1 | o© 464
A\ 2| 4 0o 5 4 4
Af=3| 4 5 © 4 4

1 1 3 3 5
Y O 4| 6 4 4 o 4
6\4 5|1 4 4 4 4 ~

Bold arrows indicate the A(i, j) = X w(p),
widest-path tree rooted at 1. ’

where w(p) is now the minimal
edge weight in p.
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Fun example, (212 % ¢} U, N)

We want a Matrix A* to solve this
global optimality problem:
a abce c e
ta) {abc} te) A )= |J wip),
(K 69-0— -0
where w(p) is now the intersection
{ab} {b} of all edge weights in p.

®

For x € {a, b, c}, interpret x € A*(i, j) to mean that there is at least
one path from j to j with x in every arc weight along the path. J
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Fun example, (212 % ¢} U, N)

The matrix A*

1 2 3 4 5
{abc} {abc} {abc} {ab} {bc}
{abc} {abc} {abc} {ab} {bc}
{abc} {abc} {abc} {ab} {bc}

{ab} {ab} {ab} {abc} {b}
{bc} {bc} {bc} {b} {abc}

a » O N =
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Semirings

A few examples

name S ® ® 0 1 possiblerouting use
sp Ne© mn 4+ oo 0 minimum-weight routing
bw N* max min 0 oo greatest-capacity routing
rel [0, 1 max x 0 1 most-reliable routing
use {0, 1} max min 0 1 usable-path routing
2w U n {} W shared link attributes?
oW N U W {} shared path attributes?

Path problems focus on global optimality

AG )= @ wip)

peP(i, j)
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Recommended Reading

Michel Gondran
Michel Minoux

Graphs, Dioids
and Semirings

New Models and Algorithms

Path Problems in
Networks

John Baras
George Theodorakopoulos
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What algebraic properties are needed for efficient
computation of global optimality?

Distributivity

LD : a®((boc) = (avb)d(awco),
RD : (aeb)ec = (avc)d(b®c).

What is this in sp = (N*°, min, +)?

L.DIST : a+ (bminc) = (a+ b) mn(a + ¢),
R.DIST : (amin b) + ¢ (a + ¢) min(b + c).

(I am ignoring all of the other semiring axioms here ...)
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Lesson 1: Some realistic metrics are not distributive!

Two ways of forming “lexicographic” combination of shortest paths sp
and bandwidth bw.

Widest shortest paths
@ metric values of form (d, b)
@ dinsp
@ binbw
@ consider d first, break ties with b
@ is distributive (some details ignored ...)

Shortest Widest paths
@ metric values of form (b, d)
@ dinsp
@ binbw

@ consider b first, break ties with d
@ not distributive
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Example

(10, 100)

(5 1)
O )

(7, 1)

@ node j prefers (10, 100) over (7, 1).
@ node i prefers (5, 2) over (5, 101). J

(5, 1)®((10, 100) & (7, 1)) = (5, 1) ® (10, 100) = (5, 101)
(5, 1)® (10, 101)) & ((5, 1)® (7, 1)) = (5, 101) & (5, 2) = (5, 2)
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Lesson 2: Left-Local Optimality

Say that L is a left locally-optimal solution when

L=(AxL)al

That is, for i # j we have

L(i, j) = EP A, 9 @ L(q, J)
geV

@ L(/, j) is the best possible value given the values L(q, j), for all
out-neighbors g of source i.

@ Rows L(/, _) represents out-trees from / (think Bellman-Ford).

@ Columns L(_, /) represents in-trees to .
@ Works well with hop-by-hop forwarding from i.
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Right-Local Optimality
Say that R is a right locally-optimal solution when

R=RxA)al

That is, for i # j we have

R(i, j) = @R, 9) @ A(q, j)
geV

@ R(/, j) is the best possible value given the values R(q, j), for all
in-neighbors g of destination j.

@ Rows L(/, _) represents out-trees from / (think Dijkstra).

@ Columns L(_, /) represents in-trees to .
@ Does not work well with hop-by-hop forwarding from /.
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With and Without Distributivity

With
For semirings, the three optimality problems are essentially the same
— locally optimal solutions are globally optimal solutions.

A"=L=R

Without

Suppose that we drop distributivity and A*, L, R exist. It may be the
case they they are all distinct.

Health warning : matrix multiplication over structures lacking
distributivity is not associative!

gg22 ( Computer Laboratory University of CaWhat Have We Learned from Reverse-Engine 29-05-2012 15/36



Example

(5,1)\

(5,1) | (10,5)

(5:4)

— (5,1) @ (51) —(5

(10,1)

(bandwidth, distance) with lexicographic order (bandwidth first).
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Global optima

1 2 3 4 5
(0,0) (5,1) (0,0) (0,00) (0
0,00) (00,0) (0,00) (0,00) (O
(5.3) (. 0) (51) (5.2) |,
6) (5,2) (5,2) (o0,0) (10,1
5) (5.4) (51) (52) (00,0

A" =

a A~ WO N =
—
o
N
~
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Left local optima

1 2 3 4 5
1 [ (00,0) (5,1) (0,00) (0,00) (0,00)
2 | (0,00) (00,0) (0,00) (0,00) (0,00)
L=3]| (5,7) (53) (o0,0) (5,1) (5,2) [,
4 | (10,6) (5,2) (5,2) (00,0) (10,1)
5,1

[6;]

(10,5) (5,4) (5,1) (52) (0,0)

Entries marked in bold indicate those values which are not globally
optimal.
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Right local optima

1 2 3 4 5
1 [ (00,0) (5,1) (0,00) (0,00) (0,00)
2 | (0,00) (00,0) (0,00) (0,00) (0,00)
R=3]| (5,2) (5,3) (o0, 0) (5,1) (5,2) |,
4 | (10,6) (5,6) (5,2) (o0,0) (10,1)
5 | (10,5) (5,5) (5,1) (5,2) (00,0)
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Left-locally optimal paths to node 2
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Right-locally optimal paths to node 2

352 é) 4 2

\

5-2
4—3—>2—d3><—5—>2
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Lesson 3: Bellman-Ford can compute left-local
solutions

ANl —
Al — (Ao AR o,

@ Bellman-ford algorithm must be modified to ensure only loop-free
paths are inspected.

@ (S, @, 0) is a commutative, idempotent, and selective monoid,
@ (S, ®, 1)is amonoid,

@ 0 is the annihilator for ®,

@ 1 is the annihilator for @,

@ Left strictly inflationarity, L.S.INF: Va,b: a# 0 — a<a®b
@ Herea<b=a=aohb.

v

Convergence to a unique left-local solution is guaranteed. Currently no
polynomial bound is known on the number of iterations required.
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Lesson 4 : Dijkstra’s algorithm can work for right-local

optimal

Input : adjacency matrix A and source vertex i € V,
Output : thei-throw of R, R(i, _).

begin
S« {i}
R(i, i)« 1
foreach g € V- {i} : R(i, q) < A(i, q)
while S # V
begin
find g € V — Ssuch that R(/, g) is <% -minimal
S+ Su{q}
foreachjc V- S
R(i, ) + R(i, j) & (R(i, q) ® A(, /))
end
end

gg22 ( Computer Laboratory University of CaWhat Have We Learned from Reverse-Engine 29-05-2012

23/36



The goal

Given adjacency matrix A and source vertex i € V, Dijkstra’s algorithm
will compute R(/, _) such that

vj € V:R(, j) =1(i,j) ® R(, q) @ A(q, j).
qeVv

Main invariant

Vk:1<k<|V|= Vje S:Ri(i, ) =1(i,))® P Rk(i, 9)®A(q, j)
qeSk

v

Routing in Equilibrium. Jodo Luis Sobrinho and Timothy G. Giriffin.
The 19th International Symposium on Mathematical Theory of
Networks and Systems (MTNS 2010).
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Minimal subset of semiring axioms needed right-local

Dijkstra
Béiring Axioms

ADD.ASSOCIATIVE :
ADD.COMMUTATIVE :

ADD.LEFT.ID :
KT NGB ONRTINE

MULT.LEFT.ID :
MULKLRIEWTMD

MULHLLEHTIANM
WIOALT [RUEHAN
UDVSHRIBUTINE

RIDISHRBUTIVE

ad(baoc)
aeb
0 a
A1/ (B4 1)

1Q a
aen
0/thl4
460
Arbr )
(B B)1# 1

A I [

R R KR KRI

(aeb)®c
b®a

a
(812 b) 1% 1

a

4
0
0
(A 10 /1 (a1 1)
(A1) Q) 12 (Io1H 1)
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Additional axioms needed right-local Dijkstra

ADD.SELECTIVE : asb € {a b}

ADD.LEFT.ANN 19a = 1

ADD.RIGHT.ANN : a1 = 1
RIGHT.ABSORBTION : a®(a®b) = a

RIGHT.ABSORBTION gives inflationarity, Va,b: a < a® b.
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Expressed in Coq

Variable plus_associative tVxyz, xe (yoaz) =(xeyl ez
Variable plus_commutative TV Y, X @By =y e X

Variable plus_selective tvxy, (key=x) || (xey=y).
(* i1dentities *)
Variable zero_is_left_plus_id : vx, zero & x = x.

Variable one_is_left_times id : ¥x, one @ x = x.

(* one 1s additive annihilator *)
Variable one_is_left_plus_ann : ¥x, one & x = one.

Variable one_is_right_plus_ann : ¥x, x ® one = one.

(* right absorbtion *)
Variable right_absorption :¥ab:T, ae (ae®b) ==a.
Definition lno {a b : T) (= a e b == a.

Motatien "A = B" := (lno A B} (at level 60).

Lemma lno_right_increasing : Yab : T, a=aehb.
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Using a Link-State approach with hop-by-hop
forwarding ...

Need left-local optimal!
L=(AoL)el <« LT=(LT& AN)asl
where @7 is matrix multiplication defined with as
a®"b=b®a

and we assume left-inflationarity holds, L.INF : Va,b: a< b® a.

Each node would have to solve the entire “all pairs” problem.
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Inter-domain routing in the Internet

The Border Gateway Protocol (BGP)

@ In the distributed Bellman-Ford family.

@ Hard-state (not refresh based).

@ Complex policy and metrics.

@ Primary requirement: connectivity should not violate the economic
relationships between autonomous networks.

@ At a very high-level, the metric combines economics and traffic
engineering.

@ This is implemented using a lexicographic product, where
economics is most significant.
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Simplified model (Gao and Rexford)

@ customer route : from somebody paying you for transit services.

@ provider route : from somebody you are paying for transit
services.

@ peer route : from a competitor.

» If you are at top of food chain you are forced to do this.
» Smaller networks do this to reduce their provider charges.

@ customer < peer < provider
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Example

long path through a customer

Q=

customer provider

short path through a peer

@ node j prefers long path though one of its customers
@ node / prefers the shorter path through its provider
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Route visibility restriction

eers
NO!
Customers YES
Customers
These restrictions are another source for violations of distributivity. J
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BGP policies are not constrained ...

As aresult ...
@ Protocol will diverge when no solution exists.

@ Protocol may diverge even when a solution exists.

@ BGP Wedgies, RFC 4264.
Multiple stable states may exist.
No guarantee that each state implements intended policy.
Manual intervention required when system gets stuck in unintended
local optima.
Debugging nearly impossible when policy is not shared between
networks.
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How to fix?
First, allow functions on arcs.

(S, ® FCS—S,0)

General conditions
@ (S, @, 0) is a commutative, idempotent, and selective monoid,

e vVie F:f(0)=0
@ For local-optima need INF : Va, f : a < f(a)

Simplest model for “fixed” interdomain routing

@ metrics of the form (¢, d) or co, where ¢ € {0,1,2} and d is a
path length,

@ metrics compared lexicographically.

@ 0 is for downstream routes (towards paying customers),
@ 1 is for peerroutes (towards competitor's customers),

@ 2 s for upstream routes (towards charging providers),
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The inflationary policy functions

@ Gao/Rexford rules in red.

0 1
a0 1
b0 1
c|0 2
d 0 2
e 0 o
f|0 o
g1 1
hi1 1
i1 2
jl1 2
k|1 o
1 |1 o

oI OIS OB Y E R SR I SR I SN

XS <CcC~0W=Q0T O3

0
2
2
2
2
2
2
00
00
00
00
00
00

1
1
1
2
2
00
00
1
1
2
2
00
00
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What Have We Learned from Reverse-Engineering
the Internet’s Inter-domain Routing Protocol?

Lessons
@ Some non-distributive algebras make are useful.
@ Local optimality is a useful notion for non-distributive algebras.
@ Bellman-Ford (path vectoring) can compute left-local optima ...
@ ... and so can Dijkstra’s algorithm!
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